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Abstract— Design and analysis of high-speed SerDes channels
primarily deal with ensuring signal integrity (SI) for desired
electrical performance. SI is predominantly judged by time
domain (TD) metrics: bit error rate (BER), eye-height (EH), and
eye-width (EW). With increasing bit rates and stringent BER
criteria, TD simulations are becoming compute-time-intensive.
A full-factorial, cost-effective design space exploration for SI is
made possible by learning-based mapping of frequency-domain
S-parameter data to EH/EW. A major challenge in this mapping
procedure is the identification of relevant S-parameter data, such
as return loss, insertion loss, crosstalks, and the frequency points
at which they are sampled. This paper outlines a methodology
to identify the critical S-parameters at specific frequency points
using information theory-based definition of data relevance using
a fast correlation-based filter solution for feature selection.
This technique is applied for identifying relevant features for
generating artificial neural network-based prediction models of
EH/EW within 2.5% accuracy for channels with high data rates
and complex topologies.

Index Terms— Artificial neural network (ANN), eye-
height (EH), feature selection, insertion loss, multilayer
perceptron (MLP), PCIe, return loss, SATA, signal integrity (SI).

I. INTRODUCTION

ENSURING signal integrity (SI) of data transfer between
transmitter and receiver is a challenging task in designing

high-speed SerDes (HSS) links. Traditionally, eye-diagrams
have been used to assess the SI characteristics. With increas-
ing signaling speeds, bit error rate (BER) requirements
have become more stringent, resulting in longer random bit
sequence simulations to capture low probability events in the
channel. Large complex electrical systems such as blade and
rack servers today support several high-speed serial data buses
such as SATA, SAS, PCIe, and USB. Electrical designers need
to ensure that the signal quality is maintained on all these high-
speed links. For such systems, SI evaluation based on eye-
height (EH) and eye-width (EW) at a given BER is intensive
in compute-time requirements.
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Time domain (TD) simulation of signal transmission can be
performed in a SPICE circuit simulation environment using
channel macromodels. Model order reduction techniques have
been used in the past to reduce numerical complexity of
simulation for channel models based on multiport-transmission
lines [1] and frequency domain (FD) S-parameters [2].
Methodologies to enforce stability, passivity, and causality of
such channel macromodels have also been investigated [3],
[4]. Furthermore, to obtain accurate BER at higher oper-
ation frequencies, statistical methods such as LinkLab [5]
and StatEye [6] were developed to speed up the simulation
time by obtaining the eye-contour based on the calculation
of cumulative distribution functions of received bit voltages
using channel transfer functions. However, these methods
assume that the underlying systems are linear, which ceases to
hold true with present-day transmitters and receivers. Hybrid
approaches were developed to capture the goodness of statis-
tical estimates and parallel time-domain simulations of select
bit sequences [7]–[9]. These constitute the present-day channel
analysis techniques in TD.

For a selected channel topology, there are several vari-
ables impacting the signal quality, such as trace length,
trace impedance, termination, and process/manufacturing tol-
erances. Several TD simulations are needed to cover the design
space thoroughly enough to come up with a sufficient set of
design rules. State-of-the-art methods for design space explo-
ration involve techniques using design of experiments (DoE).
DoE is a systematic approach to select the smallest set of
designs that optimally capture the design space [10]. Response
surface method [11] can be used to fit the DoE-based designs
to EH/EW and create a fast and accurate prediction model
for Monte Carlo analysis. Multilayer perceptron (MLP)-based
artificial neural network (ANN) is used to predict EH and
EW from channel topology variables in [12], using DoE for
training the models. However, from [13], it is evident that
for design spaces with large dimensions and highly nonlin-
ear EH/EW behavior, a DoE-based approach can sometimes
provide an inaccurate sensitivity analysis when compared to
a full-factorial sweep of variables. For a more exhaustive
coverage of the design space, a methodology for mapping
S-parameters directly to EH/EW was proposed in [14] using
learning-based modeling [15]–[17] and ANNs. A key element
of this model generation is the identification of relevant FD
metrics sampled at discrete frequency points. An arbitrary
selection of frequency points and FD parameters may lead
to the following:
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1) undersampling of data, leading to loss of important
information content and hence inaccurate models;

2) oversampling of data, leading to overtrained costly mod-
els with unnecessarily large size and computation cost.

Hence, selecting the right FD metrics and appropriate fre-
quency step sizes is critical to building accurate and low-cost
models.

In this paper, building on [18], a fast correlation-based
filter (FCBF) [19] method is applied for feature selection (FS),
i.e., to identify relevant S-parameters and frequency step sizes
containing high amount of relevant information for each of the
EH/EW values observed in the DoE set. In machine learning
applications, FS is often used when large dimensional data is
available, to increase prediction accuracy and make predictor
models cost-effective by identifying input dimensions that are
most relevant to the outputs [20], [21]. This process of input
selection facilitates accurate modeling while reducing the input
set size. In conjunction with ANN as the training module, the
resultant FD to EH/EW mapping procedure can be trained
using DoE-based FD/TD data and is capable of generating
full-factorial sweep results without further expensive TD sim-
ulations. In the absence of such an information theoretic or
data correlation-based method, the selection of FD metrics
and frequency step size is dependent on designer intuition or
interface expertise that would prevent a widespread usage or
may result in unnecessarily large models with redundant or
noisy data inputs.

The paper is organized as follows. In Section II, a
brief overview of FD to EH/EW mapping is presented.
In Section III, the FS process in the context of FD to EH/EW
mapping is explained and the constituent steps are described
in detail. In Section IV, the working of the FS method is
explained for a simple channel with variants designed to
have different dominant S-parameters. In Section V, numer-
ical results are presented to demonstrate the efficacy of the
proposed approach for SATA 3.0 and PCIe Gen 3 interfaces.
Section VI concludes this paper.

II. ANN-BASED FD TO EH/EW MAPPING

Neural networks are machines that are made to function
in a manner similar to a brain. Their two main functions
are to acquire knowledge from the environment through a
learning process and store this knowledge in the “weights.”
The prediction function for a single hidden layered MLP ANN
with N inputs, M hidden nodes, and one output is

y = f (x) =
M∑

j=1

k j ∗ G

(
N∑

i=1

wi j xi + b j

)
(1)

G(x) = 2

1 + e−2x
− 1 (2)

where x is the input vector, wi j is the weight connecting the
i th input node to the j th hidden perceptron, and k j is the
weight connecting the j th hidden perceptron to the output
node. An MLP is a two or more layer neural network with
neuron units as perceptrons that have nonlinear activation
functions in the hidden layer/s [22] as shown in Fig. 1.
The intrinsic equation of an MLP makes it suitable for

Fig. 1. Generic architecture of an ANN.

Fig. 2. ANN-based FD to EH/EW model generation and testing process.

mapping input M-dimensional vector to continuous output
functions.

For the ANN-based FD to EH/EW mapping scheme as
described in [14], and shown in Fig. 2, the choice of frequency
points and S-parameters used to generate the model, shown
as insertion loss (IL), return loss (RL), near-end crosstalk
(NEXT), far-end crosstalk (FEXT), and f1, f2, . . . f1N are
critical.

To illustrate, the frequency step size of inputs consisting of
IL and total NEXT for a six differential port topology, is varied
from 200 MHz to 2 GHz and the prediction accuracy of the
ANN model is plotted in Fig. 3. The numbers marked for each
point, indicate the total number of inputs to the resultant ANN
model. Larger number of inputs results in ANNs with higher
number of processing neurons in the hidden layer, increasing
training time. On the other hand, lesser number of inputs
result in loss of data for accurate mapping as can be seen
at 2 GHz sampling. Hence, an intelligent technique to decide
the S-parameters and their frequency points, for mapping
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Fig. 3. Effect of frequency step size on prediction error.

Fig. 4. (a) EH/EW grouped in classes with labels. (b) Training set and
features.

is required. Such a technique has the benefit of preventing
oversampling, removing redundancy in data, optimizing the
number of inputs to the network so as to preclude user intuition
to input selection.

III. FEATURE SELECTION FOR S-PARAMETERS

AND FREQUENCY POINTS

A “feature” refers to an aspect of the data that is specified
before data collection. A “data point” refers to a single collec-
tion of feature values for all features [23]. In the context of FD
to EH/EW mapping using ANN, each differential S-parameter
for the output port “m” at which the eye is measured, at
each sampled frequency is a “feature,” shown as the diamond
shapes in Fig. 4. The label of the EH/EW measured at the
port m is the “class” to which that EH/EW belongs, shown
as T1, T2, . . . Tp . Each Tk takes a value from a fixed set of
labels, assigned as shown in the inset of EH/EW versus design
figure. The S-parameters at multiple frequencies and the target

Fig. 5. Feature selection block diagram.

Fig. 6. Input binning. (a) Magnitude of S-parameters. (b) S-parameters binned
into 1000 discrete levels.

class for a particular design form a “data point,” indicated by
each rectangle in Fig. 4. A DoE set of p such data points
Di = {F1, F2, . . . FkN ; Ti}, i ∈ {1, 2, . . . p}, makes a “training
set.”

For optimal feature selection in this paper, mutual infor-
mation (MI)-based relevance definition as appearing in [24]
and the technique termed as FCBF [19] is used. The detailed
algorithm appears in [19], and a brief overview is presented
here.

Consider the symbolic representation of certain terms for the
description that follows: goodness measure SU is a normalized
indicator of the MI content between two vectors, and the set
S is a collection of kN features for p designs of the training
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Fig. 7. Impact of the number of target labels on prediction accuracy.

Fig. 8. Prediction accuracy versus percentage of features selected.

set

S = {F1, F2, F3 . . . FkN } (3)

where

Fi ∈
{

SDDm1( f1), SDDm2( f1), . . . , SDDmk( f1),
. . . . . . . . . , SDDm1( fN ), . . . . . . , SDDmk( fN )

}
(4)

and each Fi is a p × 1 vector of discrete sampled FD values
for p designs. The size of set S is thus p × kN . The set of
target labels C is given by

C = {T1, T2, T3, . . . Tp} (5)

where

Tk ∈ {L1, L2, . . . LC }. (6)

A fixed threshold δ is used for the goodness measure of
correlation, SUi,c , between the i th feature Fi and the target
label vector C . S′

list is the subset of S that contains relevant
features Fi that have a value of SUi,c > δ. Let t be the desired
percentage of kN most relevant features, used to form the set
Sbest to generate the ANN model.

The implementation of the filter-based FS consists of three
main processes, input binning, target class labeling, and rel-
evant feature identification, explained in detail as follows.
Feature selection toolbox (FEAST) [25] for MATLAB and C,
that provides implementation of common MI-based filter fea-
ture selection algorithms was used to perform FS for the
results presented in this paper. The block diagram involving
the subprocesses for FS is shown in Fig. 5.

Fig. 9. 5-Gbps generic channel topology with six design variables and four
differential ports.

Fig. 10. Minimum–maximum profiles over different training sets for (a) IL,
RL and (b) FEXT, NEXT for RL dominant channel variant.

A. Input Binning

The input to the feature selector is a training set that consists
of FD and TD simulations of DoE specific designs for a
given design space. These simulations are used to form sets
of kN features Fi . As the phase response of the channels
considered for this paper is linear, for all further discussions,
only the magnitude of the differential S-parameters is taken
into consideration. The magnitude can be represented in dB,
i.e., the log scale or the real value. The method for FS selected
for this paper is highly sensitive to the underlying probability
distributions of the input. The real value of magnitude was
selected as it is the accurate representation of the actual power
spread of the losses in the channel, unlike the value in dB that
is a logarithmic function of the magnitude. The FS technique
used here requires calculation of probabilities of occurrence of
specific inputs. To make the probability calculations, the real
valued input is divided into discrete levels, by a simple process
of thresholding. The input space is first studied to determine
the number of levels required to retain the information in as
few levels as possible. Fig. 6(a) and (b) shows the differential
S-parameters for the victim receiver port (IL, RL, FEXT, and
NEXT) for a simple two differential pair topology and the
binned values. As shown here, for this paper, the input was
binned into 1000 distinct levels. The circles on the figure
indicate the effect of binning at very low levels of magnitude
variations.

B. Target Labeling

FD to EH/EW mapping is a prediction problem and FS as
described here is a classification problem. The most common
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TABLE I

FEATURE DISTRIBUTION FOR RL DOMINANT CASE

way to convert a prediction problem into a classification one
is to tag the outputs with distinct labels or assigned classes.
The EH/EW can be distributed into classes in different ways.
A primary study was performed on a representative channel
to identify the impact of selecting number of classes for a
given DoE, on the prediction accuracy of the ANN model,
as shown in Fig. 7. As can be seen, the prediction error
across the different number of target labels or classes remains
consistently within a 2% margin. Based on several such
studies, it was observed that the EH/EW spread is captured
well within four or five different target labels or classes to
achieve accurate prediction. Furthermore, to obtain a tradeoff
between the number of classes and the number of DoE sets
for any given class, each of the channels’ EH/EW were tagged
in four or five different classes.

C. Relevant Feature Identification

The FS method presented here falls under the “filter”
technique of the broad categorization of “filter” and “wrapper”
techniques. This is because features are filtered out due to the
lack of their relevance to the target labels or classes based on
a given goodness measure. If entropy of a random variable X
is defined as (7), where P(xi ) is the probability of occurrence
of xi

H (X) = −
∑

i

P(xi ) log2 P(xi ) (7)

H (X |Y ) = −
∑

j

P(y j )
∑

i

P(xi/y j ) log2 P(xi/y j ). (8)

Then, the goodness measure, SU is given by (5)

SU(C, Fi) = H (C) − H (C/Fi)

H (C) + H (Fi)
(9)

The threshold δ is set to 0, to enable listing all the features
that have any correlation with the class distribution, with
the most relevant features appearing at the top of the list.
The percentage t determines the size of the ANN model
and hence a study was performed to identify the smallest
number of features that results in saturation of the prediction
accuracy. Fig. 8 shows the trend of prediction accuracy versus
percentage of features selected. Based on this study, 15% of
the total features were set to be selected for all following cases.

IV. PROOF OF CONCEPT: INFORMATION THEORY

AND SERDES CHANNELS

A four differential pair topology for a 5-Gbps channel,
as shown in Fig. 9 was considered to prove the efficacy of
the FS algorithm presented in Section III. P1 and P2 form

Algorithm 1 Finding Sbest for Class Set C
Input: S = {F1, F2, . . . FkN }, C = {T1, T2, . . . TP}, t , δ
Output: Sbest

1:begin
2: S′

list = {}; SUval = {};
3: for i = 1:kN do begin
4: Calculate SUi,c using (9)
5: If SUi,c > δ do begin
6: S′

list = {S′
list ; Fi };

7: SUval = {SUval; SUi,c};
8: end;
9: end;
10: order S′

list for descending values in SUval;
11: for j = 1:t∗0.01∗length(S′

list ) do begin
12: Sbest = {Sbest ; Fj };
13: end;
14:end;

Fig. 11. Distribution of selected features over differential S-parameters.
(a) IL and RL. (b) FEXT and NEXT. Blue points indicate top 50% of the
45 selected features and red points the next 50%.

differential port 1, P5 and P6 form differential port 2, P3 and
P4 form differential port 3, and P7 and P8 form the differential
port 4. The aggressor is the top differential pair shown in
Fig. 9 with Pdiff1 as the transmitter and Pdiff2 as the receiver.
The victim is the bottom differential pair shown in Fig. 9,
with Pdiff3 as the transmitter and Pdiff4 as the receiver. The
eye simulations are performed for Pdiff4. IL is the loss from
Pdiff3 to Pdiff4, NEXT is the energy coupled from victim to
aggressor transmitter ports and FEXT is the energy coupled
from victim transmitter port to aggressor receiver port. Even
though NEXT is at the transmitter, at high frequencies due
to the impedance mismatch between the transmission line and
driver (transmitter) impedance, there will be reflections at Tx
and NEXT will show up at the receiver due to the impedance
mismatch at the source. The design variables, as shown, are
the termination capacitances Cterm that take the values 0.1,
0.2, and 0.3 pF; lengths of traces L1 vary as 4, 5, and 6 in
and L2 as 6, 7, and 8 in; and the characteristic impedances as
Z1, Z2.

Four different variants of the above topology were created
to make the channel: 1) return loss (RL) dominant; 2) inser-
tion loss (IL) and RL dominant; 3) crosstalk dominant with
dominant NEXT or FEXT with use of microstrip traces and
stripline traces; and 4) as having high mode conversion. This
was achieved by changing the material properties (εr , tan δ),
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TABLE II

PREDICTION ACCURACY FOR RL DOMINANT CASE

spacing between differential pairs (sp), and characteristic
impedances Z1, Z2. The changes made to create the different
channel properties are mentioned with each case. All the four
cases were trained with a DoE set of 45 designs and a test
set of 100 random designs. The EH were classified into five
different classes, selected to have equal representation in the
DoE. All the differential S-parameters coupling power in to the
victim port, SDD43 (IL), SDD44 (RL), SDD41 (FEXT), and
SDD42(NEXT), sampled at 100 MHz up to the third harmonic
of 7.5 GHz, were supplied to the FS algorithm. This amounts
to k = 4 features per frequency point and a total of N = 75
sampled frequency points, resulting in kN = 300 features
each with a training set size of p = 45. Of the 300 training
sets, the FS algorithm was tuned to select the top ranking
t = 15% or 45 features that showed the highest relevance
to the class distribution, as defined in (5). The 45 selected
features were fed into ANN of the MLP type, with 45 input
nodes, 5 neurons in the hidden layer, and 1 output node [14],
with hidden layer having sigmoidal activation function, as
explained in (2) and output node with a linear function.
Levenberg–Marquardt (LM) [26] technique with gradient
descent and back-propagation was used for weight and bias
training. The selected features and the prediction results are
presented for each case.

A. RL Dominant Channel

To generate a channel with high amount of reflections so
that the EH is largely affected by RL, the dielectric was made
to be less lossy by using material with εr as 3.2, tanδ as 0.001,
large Z1, Z 2 variations with 80, 100, and 120 � with a trace-
to-ground height (h) 8 mil and sp set to 6 h or 48 mil. The
profiles of the differential IL, RL, FEXT, and NEXT for the
DoE set are shown in Fig. 10(a) and (b), respectively.

As can be seen from the red continuous and dotted lines,
RL has the highest variation across the 45 DoE designs.
The distribution of the selected 45 features across the four
S-parameters is shown in Table I and the frequency points
picked, for EH as targets, are represented on the S-parameter
curves in Fig. 11.

As expected, the majority of the features are from RL and
the concentration of the features below the Nyquist frequency
of 2.5 GHz indicates that band to have maximum relevance to
the EH. The prediction accuracy for the ANN model is shown
in Table II. The histogram of error in prediction of EH and
EW is shown in Fig. 12(a) and (b), and correlation plot for
simulated and predicted values is shown in Fig. 12(c) and (d).

B. IL and RL Dominant Channel

To increase the impact of IL by making the channel more
lossy, the material properties were changed to εr as 4.2, tan δ

Fig. 12. Histogram of percent error distribution of (a) EH and (b) EW.
Correlation between (c) EH and (d) EW.

Fig. 13. Minimum–maximum profiles over different training sets for (a) IL,
RL and (b) FEXT, for IL and RL dominant channel variant.

TABLE III

FEATURE DISTRIBUTION FOR IL DOMINANT CASE

TABLE IV

PREDICTION ACCURACY FOR IL DOMINANT CASE

as 0.022, with a reduced trace to ground height (h) 4 mil and
sp set to 6 h or 24 mil. Z1 and Z2 variations were retained
as in Section IV-A. The profiles of the differential IL, RL,
FEXT, and NEXT for the DoE set are shown in Fig. 13(a)
and (b), respectively. The selected feature distribution across
S-parameters is shown in Table III and Fig. 14.

As expected, the more relevant features are from IL and
the concentration of the features below the Nyquist frequency
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Fig. 14. Distribution of selected features over differential S-parameters.
(a) IL and RL. (b) FEXT and NEXT. Blue points indicate top 50 % of the
45 selected features and red points the next 50%.

Fig. 15. Histogram of percent error distribution of (a) EH and (b) EW.

Fig. 16. Minimum-Maximum profiles over different training sets for MS for
(a) IL, RL and (b) FEXT, NEXT for crosstalk dominant channel variant.

Fig. 17. Minimum-Maximum profiles over different training sets for SL for
(a) IL, RL and (b) FEXT, NEXT for cross-talk dominant channel variant.

of 2.5GHz indicates that band to have maximum relevance to
the EH. The prediction accuracy for the ANN model is shown
in Table IV. The histogram of error in prediction of EH and
EW is shown in Fig. 15(a) and (b).

C. Crosstalk Dominant Channel

To create a channel with enhanced crosstalk and minimal
IL and RL, the above channel topology and material were
varied to reduce loss by setting εr as 3.2, tanδ as 0.001 and
reduce reflections by setting Z1, Z2 variations between 98,

Fig. 18. Distribution of selected features for MS over differential
S-parameters. (a) IL and RL. (b) FEXT and NEXT. Blue points indicate top
50% of the 45 selected features and green points the next 50%.

Fig. 19. Distribution of selected features for SL over differential
S-parameters. (a) IL and RL. (b) FEXT and NEXT. Blue points indicate top
50% of the 45 selected features and blue points the next 50%.

TABLE V

FEATURE DISTRIBUTION FOR CROSSTALK DOMINANT CASE

TABLE VI

PREDICTION ACCURACY FOR CROSSTALK DOMINANT CASE

100, and 102 �. Both microstrip and stripline were used
to show the comparative reduction in far end coupling. For
microstrip trace, trace to ground height (h) was set to 5 mil
and sp was reduced from the previous two cases, to 10 mil. For
stripline trace, trace to ground height (h) was set to 9 mil and
sp to 10.8 mil. The FS algorithm was applied over channels
with both microstrip (MS) and stripline (SL) traces to study the
impact of FEXT and NEXT. The profiles of the differential IL,
RL, FEXT, and NEXT for the DoE set are shown in Figs. 16
and 17(a) and (b) for MS and SL, respectively. It can be seen
that FEXT is much higher in micro-strip case. The distribution
of selected features is given in Table V and Figs. 18 and 19.

It can be clearly seen from Figs. 18 and 19 that for micro-
strip traces, the EH have a high correlation to FEXT and
NEXT whereas for stripline the EH have almost no correlation
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Fig. 20. Histogram of percent error distribution of (a) EH and (b) EW for
microstrip.

Fig. 21. Histogram of % error distribution of (a) EH and (b) EW for stripline.

Fig. 22. Minimum-Maximum profiles over different training sets for (a) IL,
RL and (b) FEXT, NEXT for CD dominant channel variant.

Fig. 23. Distribution of selected features over differential S-parameters. (a)
IL and RL. (b) FEXT and NEXT. Blue points indicate top 50% of the 45
selected features and red points the next 50%.

to FEXT. The prediction accuracy for the ANN model is
shown in Table VI. The histogram of error in prediction of
EH and EW is shown in Figs. 20 and 21(a) and (b).

D. Common-Mode Dominant Channel

The above topology with stripline traces was modified
from that in C so that sp is 6 h or 54 mil with material
and impedance set to create minimal loss and reflections.

Fig. 24. Histogram of % error distribution of (a) EH and (b) EW.

Fig. 25. Aggressor victim topology used for FD to EH/EW mapping in all
numerical examples.

Fig. 26. Minimum–maximum profiles over different training sets for (a) IL,
(b) RL, (c) FEXT1, FEXT2, and (d) NEXT1, NEXT2 for SATA 3.0.

To enhance mode conversion effect, the second trace was
made longer by 0.66 in. This change is visible in the res-
onance in the IL, as shown in Fig. 22(a), as compared
to Figs. 10, 16, and 17(a). The profiles of the differential
IL, RL, FEXT, and NEXT for the DoE set are shown in
Fig. 22(a) and (b), respectively. The selected feature distri-
bution across S-parameters is shown in Table VII and Fig. 23.

The prediction accuracy for the ANN model is shown in
Table VIII. The histogram of error in prediction of EH and
EW is shown in Fig. 24(a) and (b).

The prediction accuracy for all the channel variants is within
1.5% and the maximum error voltage and error EW is less than
30% of the maximum variation across the test cases.
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Fig. 27. SATA 3.0 topology from controller to hard disk drive (HDD) for a single differential pair.

TABLE VII

FEATURE DISTRIBUTION FOR DOMINANT COMMON-MODE CASE

V. NUMERICAL RESULTS

In this section, numerical experiments are performed using
the proposed FS algorithm to select relevant features that are
used to generate ANN models to accurately predict EH/EW
values from S-parameters. Numerical experiments are per-
formed on two HSS interfaces, SATA 3.0 and PCIe Gen3,
to quantify the performance of ANN to map S-parameters to
EH/EW. The metrics for error measurement was chosen as
relative L2-Norm error (ε) and maximum error (δ) as defined
as follows:

ε(�a, �b) =
√√√√

∑N
i=1 |ai − bi |2∑N

i=1 |ai |2
(10)

δ(�a, �b) = MAX
i∈[1,N] |ai − bi | (11)

where ai are the predicted EH/EW values for the i th channel
topology using the proposed mapping methodology, and bi are
the values obtained after simulating the channel in TD using
a SPICE simulator. N is the size of the test set.

A. SATA 3.0

The topology shown in Fig. 27 is used in three serial-
link differential pairs shown in Fig. 25. The victim port
used for eye-measurements is differential port 4.The design
space is formed of five variables: the driver port capaci-
tance (Cdrv), expander board impedances (Zexp1, Zexp2), back-
plane impedance (Zbp), and receiver port capacitance (Crcv).
The length of expander board (Lexp) is fixed to 3” and length
of back-plane (Lbp) to 11”. The differential IL, RL, FEXT1,
FEXT2, NEXT1, and NEXT2 for the DoE set are shown in
Fig. 26 and constitute k = 6 features per frequency point. The
S-parameters sampled at 100 MHz from 0–9 GHz, resulting
in N = 91 frequency samples, are fed into the FS algorithm.
This leads to kN = 546 total number of features. As the
DoE set size has 27 designs, the EH/EW are binned into
four different classes to have maximum number of possible
classes with six or more samples. The real valued S-parameter
inputs are binned into 1000 levels. 82 (or 15% of 546) of the
selected features are used to build the ANN model for FD to

Fig. 28. Distribution of selected features over differential S-parameters.
(a) IL. (b) RL. (c) FEXT1, FEXT2. (d) NEXT1, NEXT2. Blue points indicate
top 50% of the 82 selected features and red points the next 50%.

Fig. 29. Histogram of percent error distribution of (a) EH and (b) EW for
SATA 3.0.

TABLE VIII

PREDICTION ACCURACY FOR DOMINANT COMMON-MODE CASE

EH/EW mapping. Table IX and Fig. 28 show the distribution
of selected features across the S-parameters

The prediction accuracy for the ANN model, with 82 input
nodes, 7 neurons in the hidden layer, and 1 output node,
is shown in Table X. The histogram of error in prediction
of EH and EW for 100 random test cases is shown in
Fig. 29(a) and (b).
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Fig. 30. PCIe Gen3 topology for a single differential pair.

TABLE IX

FEATURE DISTRIBUTION FOR SATA 3.0

Fig. 31. Minimum-Maximum profiles over different training sets for (a) IL,
(b) RL, (b) FEXT1, FEXT2, and (c) NEXT1, NEXT2 for PCIe Gen 3.

B. PCIe Gen 3

A PCIe Gen 3 channel with the topology shown in Fig. 30
is considered for the second set of experiments. The design
space consists of six variables Zpckg1, Zpckg2, being the
package impedances, Z1, Z4 being the termination impedances
and Z2 and Z3 being the connector impedances, as marked
in the topology with L set to 8.9”. PCIe topology involves
receiver equalization that is not needed for SATA 3.0. For the
experiments here, a three-tap feed-forward equalizer with a
DC bias were used at the transmitter and a single tap decision
feedback equalizer (DFE) was used at the receiver end. The
equalizer coefficients were allowed to adapt to the channel
response. The DoE training set consists of p = 45 designs.
The test set consists of 100 randomly selected designs. The
differential IL, RL, FEXT1, FEXT2, NEXT1, and NEXT2 for
the DoE set are shown in Fig. 31 at 100-MHz step size from
0 to 12 GHz. This constitutes k = 6 features per frequency
point, N = 121 sampled frequency points and kN = 726
total number of features. The S-parameters are binned in 1000

TABLE X

PREDICTION ACCURACY FOR SATA 3.0

TABLE XI

FEATURE DISTRIBUTION FOR PCIe GEN 3 CONSTANT EQUALIZATION

Fig. 32. Distribution of selected features over differential S-parameters.
(a) IL. (b) RL. (c) FEXT1, FEXT2. (d) NEXT1, NEXT2. Blue points indicate
top 50% of the 109 selected features and green points the next 50%.

TABLE XII

PREDICTION ACCURACY FOR PCIe GEN 3
WITH CONSTANT EQUALIZATION

values to retain maximum information. The EH is distributed
into five different classes.

The FS algorithm selects 109 (15%) of the 726 input
features which act as input to the ANN. Because of adaptive
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Fig. 33. Histogram of percent error distribution of (a) EH and (b) EW for
PCIe Gen 3 with constant equalization.

equalization process, the ANN is also supplied with the
equalization data for each case. This consists of the DFE
tap coefficients, the transmitter equalization coefficients, and
the dc bias value. The ANN used is of MLP type with 114
input nodes, one hidden layer formed of eight neurons having
sigmoid activation function and one output neuron with linear
activation function. The distribution of the selected features
is shown in Table XI and Fig. 32. The prediction accuracy is
tabulated in Table XII. The histogram of error in prediction of
EH and EW is shown in Fig. 33(a) and (b).

VI. CONCLUSION

With the growing complexity of channel topologies and
increasing bit rates for communication a full-factorial sweep
over design variables using explicit time-domain simulations
for channel characterization become prohibitive. On the other
hand, DoE-based methods can sometimes provide inaccurate
sensitivity analysis. In this paper, a feature selection method
is proposed based on an information theoretic framework
to identify the relevant FD S-parameters metrics that have
considerable impact on the EH/EW of the channel. This
is achieved by correlating underlying probability densities
of the sampled S-parameters at discrete frequencies to the
probability densities of the EH/EWs. The selected features
are fed into an FD to EH/EW mapping process using ANN
models. Therefore, the FS algorithm provides a way to prevent
undersampling or oversampling of data, resulting in compact
accurate and cost-effective ANN models with only relevant
inputs, without any requirement of channel interface expertise.
The state-of-the-art interfaces, SATA 3.0 and PCIe Gen 3,
have been studied in Section V to demonstrate that the method
works for complex high-speed topologies, and it helps achieve
prediction accuracies within 2%.
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